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ABSTRACT. A hardly known and very important result of
Kreiss is proven explicitly: Outflow boundary extrapolation , 

-

whicI~ complements stable dissipative schemes for linearhyperbolic initial value problems, maintains stability. 
~~~~

__ 
In view of this result , the Lax-Wendroff and the Gottlieb-
Thrkel schemes are applied to a test problem; as expected
from the rate-of-convergence theory by Gustafsson, global 

~ 
-

order of accuracy is preserved if outflow boundary
computations employ extrapolation of (local) accuracy of
the same order. .

A1~~(MOs) subject classification ( 1970). Primary 65Mb ; Secondary~ 6~~i0.

1. Introduction

The initial value problem

(1.1) u~ = au
~
; a > 0, x 

~ 
0, t > 0; u(x,0) =

2is well posed in L (Q,oo), and requires no boundary conditions at

x = 0. Yet , it is impossible to approximate the solution of (1.1) by

a difference scheme, which is not right-sided, without specifying boundary

t values at some points in a left neighborhood of x = 0.

C. In this paper we consider general two-sided dissipative schemes

L : which are stable for the pure Cauchy problem for -~~ < x  <~~. Our

main purpose is to provide a proof for the following ~nportant result

which was stated by Kreiss in 1965 [1i~, Thm 5) , but no detailed proof

has been published. We show that if the required boundary values are

defined by extrapolation of arbitrary order of accuracy, the numerical

algorithm remains stable.

* This research was sponsored in part by the Air Force Office of
Scientific Research, Air Force System Command, USAF , under Grant No.
AFOSR-76-30’f6.
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Of course one may have instead of (1.1), the equation U
t 

= au
~ 

with

a < 0, which defines a well posed initial value problem in the quarter

plane fx < 0, t 
~ 
0), rather than in [x 

~ 
0, t > 0). However , by

employing the t ransformation x -. -x it is clear that this problem goes

over to the previous one. Consequently, we would find that the process of

extrapolating to grid, points at some right neighborhood of x = 0, is

stable.

To sunmari ze , our aim is to show that by using a stable two-sided

dissipative scheme together with an outflow extrapolation, to approximate a

well posed initial value problem in the proper quarter plane, overall

stability is maintained. Again, since the cases a > 0 and a < 0  are

analogous, it su!fices to prove stability for difference approximations of

(1.1), and the proof is given in Section 2.

The tool by which we carry out the analysis is Kreiss’ stability theory

for dissipative finite difference approximations of mixed initial boundary

value problems. This theory is given in [5], and we assume that the

reader is familiar with this work.

In Section 3 we present numerical evidence to support the theoretical

results. We use two dissipative approximations: The well known centered

3-point Lax-Wendroff scheme, [7], and a centered 5-point scheme by Gottlieb

and Turkel , [2]. In particular, our computations verify that by using extra-

polation of local order of accuracy which equals the global order of accuracy

of the differenc e scheme, the global accuracy is preserved. The important

question of convergence rate for mixed initial boundary value problems is

discussed by Gustafsson, [ 3 ] .

The computations reported in this work were done on the IBM 360

machine , at the Campus Computing Network of the University of’ California,

Los Angeles. 

~~~~~.-,—

-

~~~-
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2. Stabil~~~~~~~~~ 1s

In order to solve the inivial value problem (1.1) by a finite dif-

ference scheme let us introduce a mesh-size Ax> 0, i~t > 0, such that

A = st/Ax = constant , and use the standard notation x~, = V Ax, v~(t)  =

v(x~,t) . Now consider a dissipative consistent approximation to (1.1)

of the form

/
(2.1) v

~
(t +z~t) = Qv~(t) , V = 1,2,... 

.

where -

p
(2.2) Q = Z a~E’t , Ev

~ 
= v,~ 1 ‘ -

j=-r

and initial values are given by

(2.3) v~(O) = f~ , v = 1,2,...

Here the fixed coefficients aj  depend on a and A, such that a_r , a~
do not vanish.

The assumption of dissipativity (in the sense of Kreiss) means that

there exist a constant 8 >  0 and a positive integer Cs~ so that the

amplification factor

p i~(2. Li.) 
~
(
~

) = E a4 e , -ir < ~

of the difference scheme, satisfies

(2.5) ) I  ~~1- 6Id ~~ , ~~~~~~
Condition (2.5) guarantees, of course, the (strong) stability of the approxi-

mation, should it be applied to the pure initial value problem for -~~ < x <

- 

-
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Our final assumption, as indicated in the introduction, is that the

scheme is two-aided, i.e., r > 0, p> 0. In fact, having disaipativity,

our scheme must be two-sided if we simply require that the difference

operator ~ will be consistent with u.~ = aux for an arbitrary va].ue of

a. — positive or negative. This result is given in Corollary 1 of [1] .

Since r > 0, it is evident that in order to apply the numerical

approximation to (1.1), we have to specify, at each time step, boundary

values v (t), = 0,-l,... ,..r+1. We do this by means of extra.pola-

tion, utilizing the Lagrange interpolation po1~momia1 of degree s - 1,

a > 1, which has accuracy of order a.

In order to comply with Kreias ’ formulation in (5], we should use the

procedure
S

(2.6) v (t) = ~ c 1,~v (t) , = 0,...,-ri-].
~

where the Lagrange coefficients, c~~, depend on ~ and are given by

(2 7) c 
W(x~) ; ,.~ = O,...,—r+1; j  = 1,.. -. ,s ,

iii. (x~~- X
j

) W’(x~J

W(x) = (x_ x 1) 
... (x-x 5)

The fact that the 
~~ 

vary with ~ causes some numerical and theoretical

inconvenience which we eliminate as follows. Since there exists a unique

polynomial of degree a - 1 which coincides with a given function at a

given points,(2.6) is equivalent to extrapolating from v
0(t),

e..,v5_ 1(t)

to v0(t), and then from v0(t),
...,v5_1(t) to v,,1(t), etc. That is,

(2.6) is equivalent to the fixed coefficient extrapolation algorithm

S

(2.8) v (t) = ~ c v~~~(t)  , ~ = 0,...,-r+l
j : L ~~~

where

W (x )
I CI~~ IL JC a = j~~~•e . ,5 ,

~1 (x~ - ~~+j )W~( X.~÷3) 

~ -. -  - _



—5—

j

and

• WIL(x) = (x - x~+1
)(x - xIL+2) ... (x - x

~+5) , ~ 
= 0,...,-r+1 .

It is straightforward to verify that regardlebs of 1.1

(2.10) c~ = ~~)(_ i) i+1 
, j  = l,w,a .

$0 our boundary conditions are

I (2.11) v
IL
(t )  = L (~)(_].)~’~ ir~÷~(t )  , eL = 0,.-.. ,-r+1 , —

and we finally write them in the convenient form

(2.12) ~~
0(
~)(_i)i V

e~+j 
0 , IL = 0,...,—r+1 .

Now the approximation to (i.i) is well defined, where the error at the

boundary extrapolation is OQ~x
8).

Next denote by H the space of all grid functions wi,, defined for

v >  -r, which fulfill the boundary condition (2.12), and which satisfy

(2.13) F Iw~
l2Ax <

v=-r+1

Upon defining inner product and norm by

(2.11~) (u ,v) = F 
~~ 

v~ L?~x ‘ I1w~!
2 

= (w ,W)
v=-r÷l

H becomes a Hu bert apace .

According to these definitions we may present our difference approxi-

mations in the form

(2.15) v(t +~~t) = Gv(t), v(t),v(t +t~t) € H

where 0 is a linear bounded operator in H defined by (2.1) together

-—~~~~~ ~~~~~~ ~~~~~~~~
- - - . — - -

~~~~
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and

WIL(x) = (x - x~+1)(x - xIL+2
) ... (x - x.~+5) ~ IL = 0,...,-r+1 .

t 

It is straight forward to verify that regardless of IL

(2.10) c~ = ~~)(_ i) i+1 
, j  = l, ”,s .

our boundary conditions are

(2.11) v
IL

( t )  = ~~(~)(_1)
i+1 vIL+j(t) , IL =

and we finally write them in the convenient form

(2.12) ~~~(S)(..1)i V
IL+j 

= 0 , IL = 0,...,—r+l .

Now the approximation to (1.1) is well defined, where the error at the

boundary extrapolation is

Next denote by H the space of a.ll grid functions ~~ def ined for

v >  -r, which fulfill the boundary condition (2.12), and which satisfy

(2.13) F Iw~, I21~x <
v=-r+l

Upon defining inner product and norm by

(2.lli.) (u,v) = 
~~ 

v~ t~.x , Il w ! 12 
= (w ,V)

v=-r+1

H becomes a Hu bert space .

According to these definitions we may present our difference approxi-

mations in the form

(2.15) v(t +M)  = G v(t ) ,  v(t),v(t +E~t) € H

where G is a linear bounded operator in H defined by (2.1) together

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

__

_ _ _ _ _ _ _ _ _ _ _ _ _ _  _ _ _ _ _ _ _ _ _ _ _ _  

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _

_ _ _ _  _ _ _ _  • •~~~~~~~~~~~~
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with (2 .12).

We say that the algorithm in (2.15) is stable if there exists a

constant IC, such that

(2.16) lIv(t) !l < KI!v(0)I! , ‘~j t  = mz~t, and v(0) € H

The above description follows Kreiss’ representation in [5], so all

the results of (5] hold, and we first rephrase the Main Theorem of [51 as

follows : The finite difference approximation is stable if the operator 0

has no eigenvalues z with Izi > 1, z ~ 1, and if z = 1 is not a

g~neralized elgenvalue of G.

The concept of a generalized eigenvalue is discussed in Section 1

of 151, and in the remainder of this section we shall show that for our

probleni,the Main Theorem is satisfied.

In order to check whether a given z with Izi > 1 is an eigenvalue

of 0, we consider the characteristic eq~ation of the difference operator Q,

r~~ 1
(2.17) det ~ a - z j  = 0

Lj -r ~ J

By Lemma 2 of [5) , equation (2.17) with z ~ 1, IzI ~ 1, has r + p

roots ~c; r of them with 0 < I <1 and p with I ~ I > 1. Wre-

over, according to the proof of Lemma 7 of [5], as z -. ~A. (Izi > 1, z ~1 i),

precisely one root i~ tends to 1, and this root approaches 1 from

inside the unit disc if and only if a < 0. In our case, the coefficient

a in (1.1) is positive, so no root ic of (2.17 ) tends to 1 from inside

the unit disc. Hence, z = 1 is not a generalized eigenvalue of 0, and

it remains to verify that z with z > 1, z p~ 1, is not an ordinary

eigenvalue of 0.

_ 
_



Suppose z0 with Iz 0I > 1, z0 p1 1, is an eigenvalue of 0, with

a corresponding eigenvector g € H. That is, Gg = z0g, or more specifi-

cally, due to the definition of G, g must satisfy the relations

(2.18) ( Q - z 0 )g~~= O , V l ,2, ...

and the boundary conditions

(2.19) ~E
0(~ )( _1)i~~+j = 0 IL =

Take the characteristic equation with z = z0, and let

I = i, • • • ,q ,  be all its distinct roots which satisfy J~c~ J < 1, each

with multiplicity ‘y~. We know that there are r such roots, so

q
(2.20) 

~ 
= r

i=1

The most general solution of the ordinary difference equation (2.18),

which belongs to H, is known to be

q ‘Yl k l V
(2.21 )  g~~= ~ r Oik V K

1 V > - r+1
1=1 k=l ‘ 

—

where the r coefficients a sre arbitrary. We still have to verifyi,k
that the solution in (2.21) satisfies the boundary conditions (2.19). So,

we insert (2.21) into (2.19) and after a simple rearrangement we get

(2.22) 

~ 
[ ~ (~ )(_ i)~ (~ ~ j)

k_1~~+i] a
1 k , IL = 0,...,-r+l

ilk-i jO ‘

In (2.22) we have a. homogeneous linear system of r equations for the r

unknowns a • Denoting the coefficient matrix by E, it can be shown,
i,k

by elementary columu operations, that E reduces to a generalized Vandermande .

Hence, det B is proportional to an expression of the form 

~~~~~~~~~~~~~~ 
- - -

~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _ _ _ _ _ _
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r q s’y11 r
• (2 .~-~ ) fl K~ (i - I ~~ ( K

1 
— ~ ) ‘

~i ,
Li=i J L1�i<j�q J

where the are integers. Since K
1 

• 
~~~ K

g 
are distinct with

0 < < 1, we see that det E p1 0; thus the only solution to (2.22)

is the trivial one, namely a. k = 0. Consequently, g~ of (2 .21)

vanishes, which means that we have failed to construct a nontrivial elgen-

solution of (G - z I)g = 0 that belongs to H. Hence, z0 is not an

eigenvalue of G, and ICreiss ’ Main Theorem assures stability.

We have proven the following result.

THEOREM (Kreiss, 1965). Let the initial value problem

= au; a = conat.; x(sig a )>  0, t >0; u(x,0) =

be approximated by a dissipative~ strongly-stab1e~ two-sided scheme, which

is complemented by outflow extrapolation of arbitrary accuracy, at the

boundary x = 0. Then, the overall approximation is stable.

We conclude this section by demonstrating the cases r = 1 and r = 2,

which cover all schemes of practical importance. In particl lar, r = 1,

r = 2, agree, respectively, with two schemes which we employ In

Section 3.

For r = 1, we have to extrapolate only at one point, IL = 0, and

the characteristic equation has only one root ic inside the unit disc. So,

an eigensolution of (G - z)g = 0, IzI > 0, z p1 1, must be of the form

(2.21i~) g = , v > 0 ,

I.. _ _ _ _  ~~~~•-~~~ - --- -~~~~ ~-~~~~~~~~- - -~~~~•—~~ -~~~~~- •--- -~~ — - - - -



and substituting this solution into the boundary condition (2.l~), we
obtain the single equation

(2.25) [
~ 

( S) ~~~ 1~~~ Ki] a = 0

Here

(2.26) det E = B = 

~~ 
(~)(_~~

1 ~ = (1 - p1 0

and stability follows.

When r = 2, we use at each time step, v1(t) , • - ,v (t ) ,  to compute
v
0(t); and then v0(t) , ...,v 1(t),  to determine v

1(t). Equation (2.17)

has now two roots 
~ 

with 0 < I K if < 1, and we distinguish between two
possibilities. The first is = K

2 = ~, where

= + a v  K
V

, .. > -l

The insertion of (2.27) into (2.19) yields the systezn of two equations

(2.28) 
j~0 
(~)-l

1[a1 + (IL+j)a2] K
IL+

~ = 0 IL = 0,-i

Writing (2.28) in the form of Ba = 0, with a’= (a1,a2) being the transposed
unknown vector , we find that

(2.29) det E = -K~~(l - K)
2

~ p1 0

The second pOssibi ity is K
1 ,1 K2. Here

(2.30) = + , - V ?  -l

which we substitute into (2.19) to obtain

( 2 .31) 

~ 
(~ )(_ l) 1(a1K~~~ ÷ a

2
K~~~ I L )  = 0 , IL = 0,-i



The coefficient determinant is

(2.32) det B = K
1
1

K
2
1
(l - K

1
) ( 1  - K

2
)
2

( K
1 

- K
2

) p1 0

and again, by the Main Theorem, stability follows.

~~~~~~~~ ical results

In this section we consider the initial value test-pr oblem

(3.1) u~ = u~
; x > 0, t > 0; u (x ,0) = sin 2nx

whose analytic solution is

(3.2) u(x,t) = sin 2IT(x ÷ t)

We begin by writing down the second order accurate Lax-Wendroff

scheme (L - W), [7), which for the linear equation in (3.1), takes

the form

(3.3) v~~~ = 
~ 

a~v~~1 v~ v~(mt ~t )

= 1 - x2, a~1 = ~ (X 2 
+ X) , X = f~t/2~x .

We recall (e.g. [8, Chapter 12)), that in the above case (a = 1),

(3.li) X < i

is a condition which assures dissipativity and strong stability.

Here, r = 1; hence, to approximate (3.1), we need to specify only 
—

one boundary value, v~. Extrapolating via v~,•••,v~, we get, according 

~~~~~~~~~~~~~~~ - -~~~~~- •~~~~-— -—-• • ~~p ••~~~~~~~~ - -~~~~~~-•--



— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-
~~~~~---~~ 

-1].-

to (2.11), a boundary condition

(3.5) v~ = ~~(~)(_1)
1
~
1
v7

which is of (local) accuracy of order a. By the theorem of Section 2,

the algorithm defined in (3 . 3)  together with (3 . 5) ,  remains stable, provided

(3. 1i.) is satisfied.

For the numerical computations we set an artificial boundary at x =

b > 0, where we use values of the analytic solution . Nevertheless , we

restrict attent ion to results in the interval 0 < x < 1, so we choose a

large enough b , in order to secure that during the integration period ,

0 < t < 1, there will be no interaction between the boundary at x = b,

and the numerical solution at 0 < x  < 1. In other words , errors due to

the right boundary, which propagate inward, never reach the region 0 < x < 1.

t’r.5 t~l.

_______ ____ _____ ~~~o,i) _____ __________

.05 2 20 2 .75-2  11.0 5 .57-2

.025 2 11.0 6 .9 3 - 3  80 1.39-2

.0125 2 80 1.72-3 i6o 3.1f6~~3

.05 1 20 5 .63-2  11.0 7 .0 3 -2

.025 1 110 1.98-2 80 2 .23-2

.0125 1 80 7.00 - 3 i6o 7. Il.1~ - 3

Table 1: L - W  results with X = ~t/.~\x = 1/2.

m = t/t~t is the rnunb€~ of t ime steps ;

- n presents a ~~~~
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The quant ity ~e l ( i )  in Table 1 is the H-norm of the error, restricted

to 0 < x < 1, i.e., in our case (r = 1),

(3.6) !Ie~~0,1)=
Ue(t)II~0,1) 

= 

~~
[v v(t) - u (x~,t)]

2
~~~

, j  =

• The integer s indicates the order of extrapolation: a = 1 and a = 2

mean constant and linear extrapolation, respectively. We realize that

all the results are stable . As expected, linear extrapolation maintains

the overall second order accuracy of the L - W scheme, while constant

extrapolation reduces the total accuracy.

Our second check relates to a centered 5-point scheme suggested by

Gottlieb and Turbel (G - T), [u). We consider the family of schemes in

(2. 11) of [2), set its parameters to be ~ = 1/2, a = 1, and linearize.

The approximation we get for equation (3.1) is

2 m 7 2(3.7) v~ = 

j=-2 
ajvv+j , a0 = 1 - X

/ 2\ X IX i\a
~1 

= X~X ± .
~~
), a

~
2 = ~~~~~~~~~ ± —) , X =

It was shown in [2], that (3.8) is stable if and only if

(3.~8) X < ~J~/2

• and if we somewhat sharpen this condition and require

(3.9) X c z~J~/2

we have dissipativity as well.

Unlike the L -W case, which is of second order of accuracy both in

time and space, the 0 - T approximation is of second order of accuracy

in time and fourth order accuracy in apace. By this we mean that the

_ _ _ _ _ _ _  - -  

~~~~~~~~~~~~~~~~~~~~~ 
--
~ 

-••-.

~~~~ ~~. -
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truncation error e satisfies

(3.10) E =  At[O(At2) + O(t~t .Ax
2
) + 0(Ax 1

)] < t ~t [O(t~t
2) + O(E~x

1
~)1

Such schemes — see also the Kreiss-Oliger approximation, [5] — have

advantages when dealing with problems whose solutions have strong space

variations but vary slowly in time. In particular, this concept fits

problems which approach a steady state. These ideas were discussed in [61.

In the G-T case r = 2, so we need to specify v0( t ),  v- 1(t) .  Again,

by ( 2.11) we have

(3.11) v~ = 
~~ 

(~~)(_ i) i~~ V7+IL , IL = 0,-i

where It Is understood that the evaluation of v~ precedes vm1.

t= .5 t=l.

— 

X 
-_

S m 
~~ll (o ,1) m ~

I I (o ,l)

.05 .5 20 9. 11.2-3 14.0 1.85-2

.025 .25 14. 80 5.75 - 1
~
. i6o i.i6 - 3

.05 .5 3 20 2.lle.~~2 11.0 2.112-2

.025 .25 3 80 1.78- 3 i6o 1 .92 -3

Table 2: 0- T results.

Table 2 shows that the results are stable. Here, in analogy with

the previous case,

J
(3.13) le~~0 ~~~~ 

~~ [v~(t) - u (x~,t)] ~x , J = i/ax
‘ v=-l

Since G - T is of fourth order accuracy in apace , it is expected that

utilizing a cubic extrapolation (a = ii.), will maintain the 14-apace

_____ _______________________
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accuracy. As shown, results for Ax = .05 and At = .025 are compared

with those for Ax/2 and At/iL Indeed, the error is reduced by a factor

of 16. This ratio is destroyed if we use quadratic extrapolation.

As a final point of rerenence to the figures in both tables we mention

that the norm of the numerical solution was for all times 0 < t < 1,

J
(3 .] A ) IHI (0 l) 

~~~~~ 

v~(t)
2 Ax 0.5 3 = 1/Ax

_ _  - -.- _  _  _  _ _
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